N-ethylmaleimide-sensitive protein(s) involved in cortical exocytosis in the sea urchin egg: localization to both cortical vesicles and plasma membrane.

نویسندگان

  • R C Jackson
  • P A Modern
چکیده

The exocytotic release of secretory products from fragments of sea urchin egg cortex has been shown to be inhibited by covalent modification of membrane sulfhydryl groups with N-ethylmaleimide (NEM). Exocytotically competent preparations of reconstituted cortex, formed by recombination of purified cortical vesicles (CVs) with fragments of egg plasma membrane (PM) were also inhibited by treatment with NEM. The cellular localization of sulfhydryl-containing constituent(s) responsible for inhibition was investigated by treating CVs and/or PM with NEM prior to reconstitution. Both native cortex and cortex reconstituted with NEM-treated components were challenged with calcium-containing buffers. Exocytosis was monitored by phase-contrast microscopy, and quantitated by light scattering. Evidence for CV-PM fusion was obtained with an immunofluorescence-based assay that permits visualization of the transport of CV content proteins across the PM. Cortex reconstituted by recombination of NEM-treated CVs with untreated PM or by recombination of untreated CVs with NEM-treated PM was exocytotically competent, whereas cortex formed by recombination of NEM-treated CVs with NEM-treated PM was inactive. These results: (1) support the hypothesis that the mechanism of exocytosis in native and reconstituted cortex is the same; (2) provide evidence that both CV and plasma membranes participate in the release of CV contents from reconstituted cortex; and (3) suggest that sulfhydryl-containing protein(s) present on the surface of purified CVs and plasma membrane are involved in exocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane fusion of secretory vesicles of the sea urchin egg in the absence of NSF.

The role of cytosolic ATPases such as N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) in membrane fusion is controversial. We examined the physiology and biochemistry of ATP and NSF in the cortical system of the echinoderm egg to determine if NSF is an essential factor in membrane fusion during Ca(2+)-triggered exocytosis. Neither exocytosis in vitro, nor homotypic cortical vesicle (CV) f...

متن کامل

O-8: Molecular Mechanisms of Membrane Fusion Involved in Fertilization

Background: Assisted fertilization procedures are a currently widespread practice to regulate reproduction in humans and animals. The arising question is why the human being manipulating gametes to generate new individuals, if we do not understand yet the molecular mechanism of fertilization?. Successful completion of fertilization in mammals is dependent on three membrane fusion events: 1. the...

متن کامل

Cortical localization of a calcium release channel in sea urchin eggs

We have used an antibody against the ryanodine receptor/calcium release channel of skeletal muscle sarcoplasmic reticulum to localize a calcium release channel in sea urchin eggs. The calcium release channel is present in less than 20% of immature oocytes, where it does not demonstrate a specific cytoplasmic localization, while it is confined to the cortex of all mature eggs examined. This is i...

متن کامل

Direct membrane retrieval into large vesicles after exocytosis in sea urchin eggs

At fertilization in sea urchin eggs, elevated cytosolic Ca2+ leads to the exocytosis of 15,000-18,000 1.3-microns-diam cortical secretory granules to form the fertilization envelope. Cortical granule exocytosis more than doubles the surface area of the egg. It is thought that much of the added membrane is retrieved by subsequent endocytosis. We have investigated how this is achieved by activati...

متن کامل

Exocytosis reconstituted from the sea urchin egg is unaffected by calcium pretreatment of granules and plasma membrane.

Micromolar calcium ion concentrations stimulate exocytosis in a reconstituted system made by recombining in the plasma membrane and cortical secretory granules of the sea urchin egg. The isolated cortical granules are unaffected by calcium concentrations up to 1 mM, nor do granule aggregates undergo any mutual fusion at this concentration. Both isolated plasma membrane and cortical granules can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 96 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1990